

Quorum Selection for Byzantine Fault Tolerance

CREDENCE workshop 2019 Leander Jehl University of Stavanger, Norway *leander.jehl@uis.no*

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

		7
		ī.
		ň
	Ť	-

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

- caused without intent
- caused by an attacker

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

- caused without intent
- caused by an attacker
 - rejuvenation

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

- caused without intent
- caused by an attacker
 - rejuvenation
- caused by a peer

Hyperledger Fabric, Tendermint, Symbiont, R3 Corda

- shared between organizations
- conflicting interests

- caused without intent
- caused by an attacker
 - rejuvenation
- caused by a peer
 - exclude

ReBFT: Optimization of PBFT

[Distler et. al, TC'16]

Figure: PBFT: Normal case messages

ReBFT: Optimization of PBFT

[Distler et. al, TC'16]

Figure: PBFT: Normal case, masks failure of s4

ReBFT: Optimization of PBFT

[Distler et. al, TC'16]

Figure: ReBFT: Throughput increased by 20%

ReBFT: Optimization of PBFT

[Distler et. al, TC'16]

Figure: Omission stops progress

ReBFT: Optimization of PBFT

[Distler et. al, TC'16]

(s₄) _____

on failure

• fall back to PBFT

Figure: Omission stops progress

Excluding replicas for fault tolerance

XPaxos:

[Liu et al., OSDI'16]

BFT with 2f + 1 nodes in hybrid async/sync model

Figure: XPaxos with f = 2

Excluding replicas for fault tolerance

XPaxos:

[Liu et al., OSDI'16]

BFT with 2f + 1 nodes in hybrid async/sync model

on failure

- try next quorum
- use round robin

Figure: XPaxos with f = 2

Excluding replicas for fault tolerance

XPaxos:

[Liu et al., OSDI'16]

BFT with 2f + 1 nodes in hybrid async/sync model

on failure

- try next quorum
- use round robin

 $\Omega(2^{f})$ view changes

Figure: XPaxos with f = 2

Architecture and algorithm to select a quorum containing correct/well behaved nodes.

System model

- $\Pi = \{s_1, s_2, ...\}$ nodes with $|\Pi| > 2f$
- up to f arbitrary failures
- asynchronous system with eventually accurate failure detector

Figure: System components

• detection of failures depends on application

Figure: System components

• detects omissions of expected messages

Failure Detector

• detects omissions of expected messages

Failure Detector

- detects omissions of expected messages
- informed about commission failure/wrong messages

Failure Detector

- detects omissions of expected messages
- informed about commission failure/wrong messages

Failure Detector Assumptions

eventual strong accuracy

• eventually no suspicions between correct nodes

Failure Detector

- detects omissions of expected messages
- informed about commission failure/wrong messages

Failure Detector Assumptions

eventual strong accuracy

• eventually no suspicions between correct nodes

XPaxos example

see paper

Quorum-Selection Correctness

- correct processes eventually agree
- processes in the quorum do not suspect each other

Figure: Nodes can disagree on suspicions

- correct processes eventually agree
- processes in the quorum do not suspect each other

- correct processes eventually agree
- processes in the quorum do not suspect each other

- correct processes eventually agree
- processes in the quorum do not suspect each other

- correct processes eventually agree
- processes in the quorum do not suspect each other

- correct processes eventually agree
- processes in the quorum do not suspect each other

Quorum-Selection Correctness

- correct processes eventually agree
- processes in the quorum do not suspect each other

Metric

how many quorums issued, if failure detector is accurate

• all nodes collect suspicions

- all nodes collect suspicions
 - suspicions must be signed by suspecting node

- all nodes collect suspicions
 - suspicions must be signed by suspecting node
- build simple graph

- all nodes collect suspicions
 - suspicions must be signed by suspecting node
- build simple graph
 - edges are not removed
 - correct nodes add the same edges in different order
 - eventually consistent

- all nodes collect suspicions
 - suspicions must be signed by suspecting node
- build simple graph
 - edges are not removed
 - correct nodes add the same edges in different order
 - eventually consistent
- find quorum as independent set of size n f

Quorum-Selection false suspicions

Problem if the failure detector is not accurate, no independent set of size n - f may exist

Figure: graph without independent set of size 3

Quorum-Selection false suspicions

Problem if the failure detector is not accurate, no independent set of size n - f may exist

- Solution assign epoch to suspicions
 - when no quorum possible, increase epoch
 - disregard suspicions from old epoch

Figure: graph without independent set of size 3

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of $\Omega(f^2)$ quorums

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of Ω(f²) quorums

Lower bound

Any deterministic algorithm requires at least $\binom{f+2}{2}$ quorum changes

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of Ω(f²) quorums

Lower bound

Any deterministic algorithm requires at least $\binom{f+2}{2}$ quorum changes

Idea concentrate suspicions on 2 correct nodes

Quorum-Selection Variations

All-to-all algorithms need to react on any suspicion within quorum

Leader based algorithms ignore suspicions between followers

Quorum-Selection Variations

All-to-all algorithms need to react on any suspicion within quorum

Leader based algorithms ignore suspicions between followers

Follower-Selection

- assume $|\Pi| > 3f$
- only $\mathcal{O}(f)$ quorums

Idea

- let leader select followers
- every leader only gets one try

Idea

- let leader select followers
- every leader only gets one try
- use failure detector to suspect misbehaving leader

Idea

- let leader select followers
- every leader only gets one try
- use failure detector to suspect misbehaving leader

at most 6f quorums with accurate failure detector

- architecture
- eventual consistent suspect graph
- quorum as independent set in $\Theta(f^2)$ changes

• architecture

- eventual consistent suspect graph
- quorum as independent set in $\Theta(f^2)$ changes

Follower-Selection

- no all-to-all communication
- $|\Pi| > 3f$
- only $\mathcal{O}(f)$ changes

• architecture

- eventual consistent suspect graph
- quorum as independent set in $\Theta(f^2)$ changes

Follower-Selection

- no all-to-all communication
- $|\Pi| > 3f$
- only $\mathcal{O}(f)$ changes

Open Questions

- other communication patterns
- Follower-Selection with $|\Pi| = 2f + 1$

Questions?

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of $\Omega(f^2)$ quorums

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of Ω(f²) quorums

Lower bound

Any deterministic algorithm requires at least $\binom{f+2}{2}$ quorum changes

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of Ω(f²) quorums

Lower bound

Any deterministic algorithm requires at least $\binom{f+2}{2}$ quorum changes

Assumption • faulty node may suspect anybody

• faulty node may cause to be suspected by anybody

Metric

how many quorum issued, if failure detector is accurate

- we require $\mathcal{O}(f^2)$ quorums
- we proof a lower bound of Ω(f²) quorums

Lower bound

Any deterministic algorithm requires at least $\binom{f+2}{2}$ quorum changes

Assumption • faulty node may suspect anybody

 faulty node may cause to be suspected by anybody

Idea concentrate suspicions on 2 correct nodes

 (s_i) node

edge in suspect-graph

• find subgraph *L*, acyclic with maximum degree 2

$$(s_i)$$
 node

— edge in suspect-graph

····· edge in L

- find subgraph L, acyclic with maximum degree 2
- select a leader
 - node with degree 0 in L

 (s_i) node

— edge in suspect-graph

····· edge in L

*s*j leader

- find subgraph *L*, acyclic with maximum degree 2
- select a leader
 - node with degree 0 in L
- leader selects followers of degree 0 or 1

- find subgraph *L*, acyclic with maximum degree 2
- select a leader
 - node with degree 0 in L
- leader selects followers of degree 0 or 1
 - use failure detector to suspect misbehaving leader

- find subgraph *L*, acyclic with maximum degree 2
- select a leader
 - node with degree 0 in L
- leader selects followers of degree 0 or 1
 - use failure detector to suspect misbehaving leader

at most 6f quorums with accurate failure detector